Complexity of random smooth functions on compact manifolds
نویسندگان
چکیده
منابع مشابه
Complexity of Random Smooth Functions on Compact Manifolds
We prove a universality result relating the expected distribution of critical values of a random linear combination of eigenfunctions of the Laplacian on an arbitrary compact Riemann mdimensional manifold to the expected distribution of eigenvalues of a (m + 1) × (m + 1) random symmetric Wigner matrix. We then prove a central limit theorem describing what happens to the expected distribution of...
متن کاملCritical Sets of Random Smooth Functions on Compact Manifolds
Given a compact, connected Riemann manifold without boundary (M, g) of dimensionm and a large positive constantLwe denote byUL the subspace ofC∞(M) spanned by eigenfunctions of the Laplacian corresponding to eigenvalues≤ L. We equipUL with the standard Gaussian probability measure induced by the L-metric onUL, and we denote by NL the expected number of critical points of a random function in UL...
متن کاملRandom Projections of Smooth Manifolds
Many types of data and information can be described by concise models that suggest each data vector (or signal) actually has “few degrees of freedom” relative to its size N . This is the motivation for a variety of dimensionality reduction techniques for data processing that attempt to reduce or eliminate the impact of the ambient dimension N on computational or storage requirements. As an exam...
متن کاملthe effect of task complexity on lexical complexity and grammatical accuracy of efl learners’ argumentative writing
بر اساس فرضیه شناخت رابینسون (2001 و 2003 و 2005) و مدل ظرفیت توجه محدود اسکهان (1998)، این تحقیق تاثیر پیچیدگی تکلیف را بر پیچیدگی واژگان و صحت گرامری نوشتار مباحثه ای 60 نفر از دانشجویان زبان انگلیسی بررسی کرد. میزان پیچیدگی تکلیف از طریق فاکتورهای پراکندگی-منابع تعیین شد. همه ی شرکت کنندگان به صورت نیمه تصادفی به یکی از سه گروه: (1) گروه موضوع، (2) گروه موضوع + اندیشه و (3) گروه موضوع + اندی...
15 صفحه اولFractal Dimension of Graphs of Typical Continuous Functions on Manifolds
If M is a compact Riemannian manifold then we show that for typical continuous function defined on M, the upper box dimension of graph(f) is as big as possible and the lower box dimension of graph(f) is as small as possible.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 2014
ISSN: 0022-2518
DOI: 10.1512/iumj.2014.63.5321